
GadgetHunter: Region-Based Neuro-Symbolic Detection of
Java Deserialization Vulnerabilities
KAIXUAN LI, AUMOVIO-NTU Corporate Lab, Nanyang Technological University, Singapore
JIAN ZHANG

∗
, Nanyang Technological University, Singapore

CHONGWANG, Nanyang Technological University, Singapore
SEN CHEN, Nankai University, China
MIN ZHANG, East China Normal University, China
ZONG CAO, Imperial Global Singapore, Imperial College London, Singapore
YANG LIU, Nanyang Technological University, Singapore

Java deserialization vulnerabilities (JDVs) enable attackers to execute arbitrary code by crafting malicious
serialized objects that trigger sequences of method calls (gadget chains) leading to dangerous operations.
Existing detection approaches face a fundamental trade-off: static analysis achieves scalability but suffers from
high false positives due to infeasible paths and imprecision with dynamic features like reflection; dynamic
validation reduces false positives but incurs prohibitive costs and fails to explore deep exploitation chains.

We present GadgetHunter, a neuro-symbolic JDV detector that combines scalable static analysis with
targeted LLM reasoning and JDV exploitation-oriented constraint solving. Our approach partitions gadget
chains into regions based on analyzability: statically resolvable segments are processed via interprocedural
taint analysis, while dynamic boundaries are delegated to LLMs for semantic validation. We then extract
critical constraints from each gadget and compose them into SMT formulas to determine chain feasibility
through satisfiability solving. Evaluation on the ysoserial benchmark demonstrates that GadgetHunter
reduces false negatives by up to 32% and false positives by 12-85% compared to state-of-the-art tools, while
discovering 197 previously unknown gadget chains and rediscovering 4 recent CVEs. Our results show that
combining symbolic reasoning with semantic understanding achieves both precision and practical impact in
vulnerability detection.

ACM Reference Format:

Kaixuan Li, Jian Zhang, Chong Wang, Sen Chen, Min Zhang, Zong Cao, and Yang Liu. 2026. GadgetHunter:
Region-Based Neuro-Symbolic Detection of Java Deserialization Vulnerabilities. 1, 1 (February 2026), 21 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Java deserialization vulnerabilities (JDVs) [20] have repeatedly caused high-impact incidents across
widely used middleware and frameworks such as Apache Dubbo, Spring, MyFaces, and WebLogic.
∗Corresponding author.

Authors’ addresses: Kaixuan Li, AUMOVIO-NTU Corporate Lab, Nanyang Technological University, Singapore, Singapore,
kaixuan.li@ntu.edu.sg; Jian Zhang, Nanyang Technological University, Singapore, Singapore, jian_zhang@ntu.edu.sg;
Chong Wang, Nanyang Technological University, Singapore, Singapore, chong.wang@ntu.edu.sg; Sen Chen, Nankai
University, Tianjin, China, senchen@nankai.edu.cn; Min Zhang, East China Normal University, Shanghai, China, mzhang@
sei.ecnu.edu.cn; Zong Cao, Imperial Global Singapore, Imperial College London, Singapore, Singapore, z.cao@imperial.ac.uk;
Yang Liu, Nanyang Technological University, Singapore, Singapore, yangliu@ntu.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2026/2-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: February 2026.

HTTPS://ORCID.ORG/0000-0002-3517-353X
HTTPS://ORCID.ORG/0000-0001-8316-1894
HTTPS://ORCID.ORG/0000-0003-1424-6290
HTTPS://ORCID.ORG/0000-0001-9477-4100
HTTPS://ORCID.ORG/0000-0002-3152-4347
HTTPS://ORCID.ORG/0009-0001-2069-4949
HTTPS://ORCID.ORG/0000-0001-7300-9215
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0002-3517-353X
https://orcid.org/0000-0001-8316-1894
https://orcid.org/0000-0003-1424-6290
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0002-3152-4347
https://orcid.org/0009-0001-2069-4949
https://orcid.org/0000-0001-7300-9215
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Kaixuan Li, Jian Zhang, Chong Wang, Sen Chen, Min Zhang, Zong Cao, and Yang Liu

By injecting crafted serialized objects, attackers can exploit sequences of method invocations to
reach security-sensitive operations (e.g., remote code execution, arbitrary file upload/deletion).
Numerous CVEs reported over the past decade highlight both the prevalence and the severity of
these vulnerabilities [9, 11]. Consequently, proactive detection is essential to mitigate potential
risks before exploitation.

In past years, significant efforts have been devoted to detecting JDVs, leading to two predominant
methodological strands: static program analysis only and hybrid analysis that combines static
gadget chain mining with fuzzing for validation [6, 7, 9, 10, 20, 28, 33, 35, 44]. Previous static-only
approaches [10, 20, 28, 35, 44] typically operate by constructing call graphs via either lightweight
Class Hierarchy Analysis (CHA) or, more precisely, whole-program Pointer Analysis (PA) and then
identifying source-to-sink data flows within them. However, these methods are fundamentally
limited in handling the dynamic semantics inherent to deserialization, such as reflection, dynamic
proxies, and runtime polymorphism: CHA-based approaches, while scalable, introduce numerous
unreachable (phantom) edges into the call graph, leading to high false positives and hindering
efficient exploration [22]. Conversely, PA-based techniques, though more precise, struggle to
soundly model the flow of both newly instantiated and attacker-controlled deserialized objects, a
critical requirement for this domain [26]. This often results in missing edges and false negatives.
Recent works pair static discovery of potential gadget chains with directed fuzzing for dynamic
verification [6, 7, 9, 33]. While this represents a pragmatic advance, their approaches remain limited
by static imprecision and path explosion, and inadequate dynamic coverage with high overhead.
Furthermore, the statically reported gadget chains are dominated by dynamic features (85.3%,
see Section 5.3), which existing approaches fail to analyze precisely. Even hybrid techniques provide
only partial coverage, since fuzzing struggles to explore these dynamic calls systematically, leading
to missed exploitable chains.

Key idea. To address this gap, our key idea is to let static analysis provide the scalable backbone,
while delegating unresolved or dynamic boundaries to LLMs for reasoning. Static analysis offers
high-recall interprocedural tracking but becomes brittle in the presence of reflection, proxies,
or dynamic dispatch. We therefore partition candidate chains into regions: segments that can be
resolved statically are grouped, while boundaries involving dynamic ambiguity (e.g., reflective calls
or polymorphic dispatch) are delegated to the LLM. At these boundaries, the LLM acts as an oracle
to conduct semantic reachability analysis. Unlike prior hybrid methods that rely on fuzzing to
blindly explore unresolved paths, our delegation is targeted and semantics-aware, applying LLM
reasoning only where static analysis fundamentally fails. Finally, reachable chains are subjected to
SMT-based path feasibility checking, enabling precise end-to-end exploitability validation.

Our approach. Based on this principle, we propose GadgetHunter for JDV detection. We retain
the scalability of static analysis while compensating for its blind spots with LLM-based semantic
reasoning. Our approach operates in three stages: (1) comprehensive taint analysis to discover
candidate chains, (2) region-based semantic reachability analysis using LLMs to validate inter-
region transitions, and (3) JDV exploitation-oriented path feasibility checking using SMT solvers to
ensure exploitability. The evaluation on the ysoserial benchmark and seven large real-world Java
projects, GadgetHunter reduced false positives and false negatives effectively compared with six
SOTA approaches, and further uncovered 197 previously unknown gadget chains, as well as four
recently disclosed CVEs, within practical analysis time and financial cost.

Contributions. This paper makes the following three contributions:
• Formulation and framework. We introduce the first region-based neuro-symbolic frame-
work for JDV detection. By formulating JDV detection as a feasibility-aware reachability

, Vol. 1, No. 1, Article . Publication date: February 2026.

GadgetHunter: Region-Based Neuro-Symbolic Detection of Java Deserialization Vulnerabilities 3

problem, our tool GadgetHunter integrates interprocedural static taint analysis with solver-
backed feasibility, while selectively delegating only inter-region semantic uncertainty to LLM
reasoning.
• Evaluation. We conduct an extensive evaluation on the ysoserial benchmark and real-
world Java projects. GadgetHunter consistently outperforms SOTA baselines in recall and
precision, reducing FPR by 12–85% and FNR by up to 32%, discovering 197 new gadget chains,
with modest computational and financial cost (23.5s and 0.04$/per chain).
• Implementation and open science.We implement a prototype of GadgetHunter and
release it as open source at https://github.com/MarkLee131/GadgetHunter, facilitating future
research on JDV detection.

2 BACKGROUND
2.1 JDV Detection and Its Challenges
A gadget chain is a sequence of method invocations that connects a deserialization source (e.g.,
ObjectInputStream.readObject) to a security-sensitive sink (e.g., Runtime.exec). Each gadget
in the chain is a method whose invocation can be influenced by deserialization and performs state
changes useful for exploitation [9]. Unlike conventional vulnerabilities, gadget chains exploit the
composition of benign library functionality to achieve critical impact through carefully crafted
object graphs. JDV detection faces a fundamental precision-recall dilemma that existing approaches
cannot resolve effectively. Not only do JDVs usually involve dynamic features, but on average,

85.3% of gadgets in each statically detected chain involve dynamic features that defeat
conventional static analysis techniques.
The fundamental challenge is that gadget chains contain both statically analyzable segments

and semantic boundaries requiring dynamic understanding. Existing approaches either treat all
boundaries uniformly (missing the opportunity for targeted reasoning) or rely on imprecise static
approximations (suffering from the precision-recall trade-off). What is needed is a principled
approach that can distinguish between different types of dynamic boundaries and apply appropriate
reasoning techniques to each.

2.2 Related Work
2.2.1 Java Deserialization Vulnerability Detection. Prior JDV detection research mainly falls into
two directions: ❶ Static analysis-based approaches [4, 7, 10, 20, 28, 35, 44]. This line of work
aims to improve gadget-chain discovery through advanced program analysis. Representative tools
include GadgetInspector[20] and Serianalyzer [4], which apply taint analysis on bytecode to trace
untrusted data to sensitive sinks. Tabby [10] leverages code property graphs to support customizable
and efficient gadget queries. Seneca [35] extends WALA with deserialization-oriented call-graph
construction to reduce false negatives. Flash [44] further improves precision and scalability by
recovering reflection-related edges involving controllable variables and pruning irrelevant paths
within the Tai-e [40] framework. ❷ Hybrid analysis via dynamic validation [6, 9, 33, 39]. To
address the inherent limitations of static analysis, these works combine it with dynamic techniques.
Crystallizer [39] performs dynamic sink identification and builds gadget graphs for detection.
SerHybrid [33] uses directed fuzzing to validate gadget chains extracted from heap access paths.
ODDFuzz [6] introduces structure-aware and overriding-guided fuzzing to efficiently generate
proof-of-concept exploits. JDD [9] improves efficiency by reusing recurring gadget fragments across
projects.

2.2.2 Studies on Java Deserialization Vulnerabilities. Several empirical studies specifically focus on
JDVs [22, 24, 36]. Sayar et al. [36] conducted a large-scale experiment and found that patches are

, Vol. 1, No. 1, Article . Publication date: February 2026.

https://github.com/MarkLee131/GadgetHunter

4 Kaixuan Li, Jian Zhang, Chong Wang, Sen Chen, Min Zhang, Zong Cao, and Yang Liu

1. class AnnotationInvocationHandler implements … {
2. private void readObject(ObjectInputStream in) throws Exception {// Gadget I
3. for (Map.Entry e : memberValues.entrySet()){ // -> Map(Proxy).entrySet()
4. // ... guard conditions ...
5. e.setValue(null);}} // -> Gadget III via invoke()
6. public Object invoke(Object proxy, Method method, Object[] args) { // Gadget II
7. // ... proxy invocation logic ...
8. return memberValues.get(method.getName());} // -> could trigger TransformedMap
9. }
10. public class TransformedMap extends AbstractInputCheckedMapDecorator …{
11. public Object setValue(Object value) { // Gadget III
12. Object v = checkSetValue(value);
13. return entry.setValue(v);}
14. protected Object checkSetValue(Object value) {
15. return valueTransformer.transform(value);} // -> Gadget IV
16. }
17. public class ChainedTransformer implements Transformer…{
18. public Object transform(Object in) {// Gadget IV
19. for (Transformer t : iTransformers) {
20. o = t.transform(o);} // -> Gadget V & VI
21. return o;}
22. }
23. public class ConstantTransformer implements Transformer,…{
24. public Object transform(Object in) {// Gadget V
25. return Runtime.class;} // -> returns Class object
26. }
27. public class InvokerTransformer implements Transformer, …{
28. public Object transform(Object input) throws Exception {// Gadget VI
29. // ... reflection setup: getMethod -> invoke -> Runtime.exec ...
30. return method.invoke(input, args);} // -> dynamic method invocation
31. }

Fig. 1. A simplified motivating example from CommonsCollections (CC1) in the ysoserial benchmark.

often incomplete or replaced with workaround fixes. Kreyssig et al. introduced Gleipner [22], a
synthetic benchmark to evaluate JDV detection tools, and compared seven existing tools showing
persistent difficulties in gadget-chain detection. More recently, Kreyssig et al. [24] studied the attack
surface of gadget chains in Android by analyzing the Android SDK, official libraries, and popular
third-party libraries. The results show the JDV’s threat in Android is more nuanced. Kreyssig et
al. [23] conducted an assessment, showing that small code changes in dependencies can activate or
inject Java deserialization gadget chains, revealing dormant chains in 53 projects and underscoring
JDVs as a serious supply chain risk.

2.2.3 LLM for Program Analysis. Recent work has explored integrating LLMs into program analysis.
Iris [27] leverages LLMs to infer taint specifications and validate CodeQL’s results on path traversal
and injection vulnerabilities in Java, but does not address reachability or feasibility. LLMDFA [42]
applies LLMs to data-flow analysis and bug detection for C programs. BugLens [25] presents a
fully automated LLM-based workflow for Linux kernel bugs, using LLMs to reason about path
reachability and the feasibility of static warnings. Their approach serves as an ablation baseline for
GadgetHunter (denoted SA_LLMC in Section 5.3). In contrast, our work specifically addresses
the unique characteristics of JDVs that prior approaches fail to handle effectively. By incorporating
semantic reasoning at dynamic boundaries, supplementing static analysis, and validating chains
via SMT-based feasibility checking, we achieve both scalability and precision. This design uniquely
combines JDV domain knowledge with targeted reasoning techniques to achieve both scalability
and precision.

2.3 Motivating Example
To illustrate the limitations of static analysis and the necessity of semantic understanding, we exam-
ine the classic Apache CommonsCollections CC1 gadget chain from the ysoserial benchmark [17].

, Vol. 1, No. 1, Article . Publication date: February 2026.

GadgetHunter: Region-Based Neuro-Symbolic Detection of Java Deserialization Vulnerabilities 5

As illustrated in Figure 1, this gadget chain exploits the TransformedMap and AnnotationInvocation
Handler classes to achieve remote code execution through carefully constructed serialized payloads.
When analyzing this chain, static analysis encounters fundamental difficulties that mirror our

approach’s two-stage design. CHA must conservatively assume all Transformer implementa-
tions are reachable from checkSetValue(), including benign transformers like NOPTransformer,
StringValueTransformer, and dozens of library implementations. However, the attacker’s pay-
load construction ensures only the malicious ChainedTransformer is instantiated. Static analysis
cannot distinguish between syntactically reachable and semantically feasible paths. The reflective
call method.invoke(input,iArgs) creates an explosion of potential call edges, as CHA assumes
any method on any reachable object could be invoked, generating thousands of phantom paths. Yet
semantic analysis reveals strict constraints: iMethodNamemust be “exec”, inputmust be a Runtime
instance, and the transformation chain must produce compatible types at each step. To avoid false
negatives, static tools use conservative CHA, reporting hundreds of potential chains where most
violate implicit semantic constraints (null checks, type compatibility, or logical dependencies that
cannot be satisfied simultaneously).

3 METHODOLOGY
3.1 Problem Formalization

Problem Setup. Given a Java program 𝑃 with method setM, class set C, and call graph edges E,
we define Targets(𝑒) as the statically computed target methods for call edge 𝑒 , and HasBody(𝑚) as
a predicate indicating whether method𝑚 has analyzable bytecode. The analysis requires two sets
of security-sensitive methods: deserialization sources S𝑠𝑟𝑐 ⊆ M (e.g., readObject) and security-
sensitive sinks S𝑠𝑖𝑛𝑘 ⊆ M (e.g., Runtime.exec).

Objective. The goal is to identify feasible gadget chains G = {𝜋1, 𝜋2, . . . , 𝜋𝑘 }, where each 𝜋𝑖 =

⟨𝑚0,𝑚1, . . . ,𝑚𝑛⟩ represents an exploitable call sequence from source𝑚0 ∈ S𝑠𝑟𝑐 to sink𝑚𝑛 ∈ S𝑠𝑖𝑛𝑘
that is both reachable (admits a valid control-flow path) and feasible (satisfies all execution
constraints without contradictions).

3.2 Overview
To address these challenges, GadgetHunter integrates static analysis with LLM-guided reasoning
in a three-stage hybrid analysis pipeline (Figure 2). Each stage addresses specific limitations while
building upon the strengths of the previous components:

Stage 1: Interprocedural Taint Analysis (Section 3.3). Comprehensive gadget chain detection
requires systematic exploration of all potential source-to-sink data flows, but existing knowledge
bases are incomplete and may miss novel attack vectors. To address this coverage problem, we
design an enriched taint analysis approach that expands the search space while maintaining
tractability. We first curate a comprehensive knowledge base of sources and sinks from historical
CVEs and prior works. Then, building upon prior work [44], we use the demand-driven pointer
analysis [44], ensuring that potentially exploitable chains are missed as little as possible during the
initial discovery phase while maintaining computational tractability. It yields an over-approximated
candidate set Ĝ that captures potential gadget chains but also includes infeasible paths due to
dynamic dispatch uncertainty.

Stage 2: Region-Based Semantic Reachability Analysis (Section 3.4). Static analysis suffers from
phantom edges where syntactically valid method calls may be semantically unreachable due to
type constraints, API contracts, or runtime conditions. To address this over-approximation problem,
we design a region-based semantic filtering approach that systematically distinguishes between

, Vol. 1, No. 1, Article . Publication date: February 2026.

6 Kaixuan Li, Jian Zhang, Chong Wang, Sen Chen, Min Zhang, Zong Cao, and Yang Liu

Target
Application

§ 3.3: Interprocedural Taint Analysis § 3.4 Region-Based Semantic Reachability Analysis § 3.5 Deserialization-Oriented Path Feasibility Analysis

Region-Level TraversalChain Candidates

Gadget Regions

SMT solvingHybrid Dispatch-based
Taint Analysis

Source & Sinks

Gadget Chain

Dispatch- & Resolution-
Aware Region Partitioning

Reachability Analysis
via LLM Reasoning

Gadget-Level Traversal

JDV Exploitation-
Oriented Constraint

Extraction

Source-code Context

class HashMap<K, V> extends AbstractMap<K, V>
{
 Node<K, V>[] table;
 V put(K key, V value) {
 return putVal(hash(key), key, value);}
 V putVal(int hash, K key, V value) {
 Node<K, V> p = table[(int) index];
 if (p != null
 && key != null
 && p.hashCode() == key.hashCod
e()
 && p.key != key) {
 key.equals(p.key);}
 return value;}
}

𝑆𝑆𝑖𝑖 =< 𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟𝑖𝑖 ,𝐹𝐹𝐹𝐹𝐹𝐹𝑤𝑤𝑖𝑖 ,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑑𝑑𝑖𝑖,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝐼𝐼 >

Exploitable Gadget Chains

Fig. 2. Overview of GadgetHunter.

spurious and feasible call transitions. For each candidate chain 𝜋 ∈ Ĝ, we partition it into regions
𝜋 = 𝜋1∥𝜋2∥ · · · ∥𝜋𝑘 where static analysis remains precise, while employing LLM-based semantic
reasoning to validate inter-region transitions where static analysis loses precision due to dynamic
dispatch or unresolved targets. This produces a filtered set Ĝreach ⊆ Ĝ of reachable chains.

Stage 3: Deserialization-Oriented Path Feasibility Analysis (Section 3.5). Even semantically reach-
able chains may be unexploitable if they violate execution constraints such as null checks, ac-
cess control, or incompatible data flow requirements. To solve this path feasibility problem, we
design a constraint-based validation approach that models execution prerequisites and verifies
their satisfiability. For each chain 𝜋 ∈ Ĝreach, we extract gadget-level summaries in the form
⟨Vars, Flow,Guard,Runtime⟩ through LLM-guided constraint extraction. Vars captures required
variable bindings and type constraints, Flow models data propagation across method calls, Guard
represents blocking conditions (e.g., null checks, access control), and Runtime addresses JVM run-
time limitations (e.g., reflection accessibility, module constraints). These summaries are composed
into a global path formula Φ(𝜋) = ∧𝑛

𝑖=1 (Vars𝑖 ∧ Flow𝑖 ∧ Guard𝑖 ∧ Runtime𝑖) and solved using
SMT-based constraint satisfaction. For chains with SAT(Φ(𝜋)) = true, the SMT solver provides
concrete variable assignments that can guide payload construction. Only these validated chains are
retained as the final feasible set G.
The three stages work together: Let Ĝ denote the candidate set from Stage 1. Each chain 𝜋 =

⟨𝑚0, . . . ,𝑚𝑛⟩ ∈ Ĝ is partitioned into regions 𝜋 = 𝜋1∥𝜋2∥ · · · ∥𝜋𝑘 in Stage 2, and inter-region
transitions are validated using LLM-based semantic reachability analysis, obtaining Ĝreach. Finally,
Stage 3 extracts path constraints Φ(𝜋) from gadget summaries. The final output is: G = {𝜋 ∈
Ĝreach | SAT(Φ(𝜋))}.

3.3 Interprocedural Taint Analysis
3.3.1 Collecting and Classifying the Source–Sinks. Given a gadget chain 𝜋 = ⟨𝑚0,𝑚1, . . . ,𝑚𝑛⟩, the
entry method 𝑚0 ∈ S𝑠𝑟𝑐 is a source, namely a deserialization entry point that ingests attacker-
controlled input. The terminal method𝑚𝑛 ∈ S𝑠𝑖𝑛𝑘 is a sink, namely a security-sensitive API whose
invocation may cause side effects such as code execution, file access, or class loading. For each
adjacent pair (𝑚𝑖 ,𝑚𝑖+1), the execution of𝑚𝑖 must trigger the invocation of𝑚𝑖+1, thereby ensuring
control-flow or data-flow across the chain. We denote by G = {𝜋 | 𝑚0 ∈ S𝑠𝑟𝑐 ,𝑚𝑛 ∈ S𝑠𝑖𝑛𝑘 } the set of
all feasible gadget chains. To enable systematic mining of G, we first construct a knowledge base of
candidate sources S𝑠𝑟𝑐 and sinks S𝑠𝑖𝑛𝑘 , distilled from historical Java deserialization vulnerabilities.

Following prior work practices [7], we crawled the National Vulnerability Database (NVD) and
GitHub Advisory Database to collect Java projects with security advisories. In total, we identified
5,911 Java open-source projects with reported CVEs. To focus on deserialization vulnerabilities, we

, Vol. 1, No. 1, Article . Publication date: February 2026.

GadgetHunter: Region-Based Neuro-Symbolic Detection of Java Deserialization Vulnerabilities 7

filtered projects by CWE identifier (CWE-502: Deserialization of Untrusted Data [16]), resulting in 343
candidates. For reproducibility and to obtain reliable ground-truth exploitation semantics, we further
excluded cases without publicly available patches, since patches are essential for understanding the
exact gadget chains involved. After this filtering, we obtained 165 confirmed Java deserialization
vulnerabilities, each validated by corresponding patches referenced in the advisories, expanding
beyond the 68 CVEs in [7].

We manually reviewed the corresponding patches and exploit descriptions to identify concrete
deserialization entry points and dangerous API calls. CVEs without sufficient patch evidence or
exploitable call sites were excluded. Two co-authors with expertise in Java deserialization further
consolidated the results, cross-checking with prior work [6, 7, 9, 10]. Through this process, we
distilled 20 unique sources and 40 unique sinks. Compared to prior works [6, 7, 9, 10], our knowledge
base includes 9 additional sources and 15 new sinks, as shown in Table 1.

Table 1. Sources and sinks collected from historical Java

deserialization CVEs. Gray items are newly incorporated.

Category Type Methods

Sources

JDK Serialization readObject, readExternal, readResolve, finalize

readObjectNoData , writeReplace , validateObject

Third-party XMLDecoder.readObject , XStream.fromXML

ObjectInputValidation.validateObject

Object Methods equals, hashCode, compare, compareTo, toString

Collection Methods get, put, call , doCall

Class Initialization <clinit>

Sinks

RCE
exec, start, exit, loadLibrary

eval , GroovyShell.evaluate , clojure.core$eval

Context.evaluateString , PyFunction.__call__ , newTransformer

Reflection

getDeclaredMethod, getConstructor, getMethod, invoke

forName, newInstance, <init>, loadClass

findClass, defineClass, invokeMethod

invokeStaticMethod , invokeConstructor

Network Access getConnection, connect, openConnection, openStream

InetAddress.getByName

JNDI Injection lookup, getObjectInstance, do_lookup, c_lookup

File Access newBufferedReader, newBufferedWriter, delete

newInputStream, newOutputStream

Property Access setPropertyValue , getPropertyValue , ValueExpression.getValue

Table 2. JVM call instructions and our region

partitioning policy.

Call Type JVM Instruction Partitioned? Example

STATIC invokestatic ✗ Math.max(x,y)
SPECIAL invokespecial ✗ new A(), super.f()
VIRTUAL invokevirtual ✓ obj.toString()
INTERFACE invokeinterface ✓ list.add(e)
DYNAMIC invokedynamic ✓ LambdaMetafactory

3.3.2 Hybrid Dispatch-based Taint Analysis. Built on the collected source and sink methods, we
aim to use an interprocedural taint analysis that prioritizes soundness over completeness. Inspired
by Flash [44], we adopt their hybrid dispatch technique that strategically balances precision and
recall based on variable controllability. Specifically, the hybrid dispatch resolves callees at call sites
based on the controllability of their receiver variable: if controllable, a more comprehensive but
potentially less precise technique (e.g., CHA, proxy dispatch) is used; otherwise, a more precise
technique (e.g., pointer analysis) is applied. This technique recovers missing call edges by handling
reflection involving controllable variables [44], so it aligns with our design principle of prioritizing
soundness over completeness in the deserialization vulnerability detection scenario.1

3.4 Region-Based Semantic Reachability Analysis

Given the over-approximated candidate set Ĝ from Stage 1’s taint analysis, the central challenge
is that many inter-region transitions represent phantom edges: call sites where static analysis
conservatively includes all syntactically valid targets, but runtime semantics severely constrain
actual reachability. The problem is that caller-side logic (parameter validation, type narrowing,

1We reuse Flash’s core pointer analysis framework but remove its source-sink pair deduplication mechanism. Even when
source and sink methods are identical, different attack paths between them can constitute distinct exploitable gadget chains
with varying exploitability characteristics.

, Vol. 1, No. 1, Article . Publication date: February 2026.

8 Kaixuan Li, Jian Zhang, Chong Wang, Sen Chen, Min Zhang, Zong Cao, and Yang Liu

guard conditions) often determines which callees can actually be invoked, but static analysis cannot
capture these semantic dependencies at dynamic dispatch boundaries.
Our key insight is that deserialization gadget chains exhibit favorable properties for semantic

validation: (i) deserialization callbacks (readObject, readResolve, equals, hashCode) directly
shape receiver and parameter types through object construction logic, (ii) inter-region transitions
are typically “thin” semantic bridges (map lookups, comparator calls, simple delegation) rather
than complex control flows, and (iii) caller-centric analysis can effectively validate transition
feasibility without requiring whole-program reasoning. We therefore design a caller-centric semantic
reachability analysis that systematically validates each inter-region transition by analyzing the
caller’s complete implementation context.

3.4.1 Dispatch- and Resolution-Aware Region Partitioning. Static taint analysis becomes imprecise
when encountering dynamically dispatched calls (invokevirtual, invokeinterface), unresolved
invocations (native methods, missing bytecode), or reflective constructs. In such cases, the static
analyzer conservatively includes all potential targets according to Class Hierarchy Analysis, yielding
spurious paths that violate runtime type constraints, API contracts, or semantic dependencies.
For instance, while CHA might connect a List.get() call to implementations across dozens of
collection classes, the actual runtime type and calling context often restrict the feasible targets to a
much smaller set.

Our region partitioning strategy systematically identifies these precision boundaries by analyzing
JVM dispatch semantics. Each region 𝜋𝑖 contains a maximal sequence of statically resolvable
call edges where traditional static analysis remains precise, while region boundaries demarcate
transitions where static analysis loses precision due to dynamic dispatch or unresolved targets.

The JVM instruction set encodes invocation dispatch, distinguishing statically bound calls from
dynamically bound ones. This distinction directly informs analyzability in static analysis: the
instruction’s dispatch mechanism determines whether the callee can be precisely resolved at
analysis time or must be treated as late bound.

Deserialization gadget chains often mix fully analyzable calls with late-bound invocations. To sep-
arate static from dynamic reasoning, we use the JVM call instruction as an operational heuristic for
region partitioning (Table 2). Concretely, calls via invokestatic and invokespecial are merged
within a region, as their targets are fixed at compile time. In contrast, calls via invokevirtual,
invokeinterface, and invokedynamic resolve targets based on runtime type or linkage and there-
fore introduce region boundaries. This conservative policy prevents dynamic uncertainty from
propagating within a region and confines subsequent reasoning to inter-region links.

Critically, opcode alone does not capture all sources of dynamic uncertainty. Even for invokestatic
and invokespecial, static analysis may lack a precise or analyzable target, e.g., when the callee
body is unavailable (libraries without bytecode), is native, is dynamically generated/loaded, or is in-
troduced by framework glue that eludes standard call-graph builders. These cases should be treated
as unresolved from a target-resolution perspective. We therefore complement the opcode-based
rule with an unresolved-invocation predicate (Definition 1 as follows), which identifies calls whose
targets cannot be resolved or analyzed statically.

Definition 1 (Unresolved Invocation). Using our established notation, we define
UnresolvedInvoke(𝑒) ≜

(
Targets(𝑒) = ∅

)
∨

(
∃𝑚 ∈ Targets(𝑒). ¬HasBody(𝑚)

)
.

An invocation is unresolved if no callee can be determined statically, or if some potential callees lack
analyzable code (e.g., native methods, dynamically generated classes, or library stubs).

In practice, unresolved edges surface through framework-specific indicators: Soot may report
missing source-position metadata (e.g., LineNumberTag = -1), WALA may insert synthetic call

, Vol. 1, No. 1, Article . Publication date: February 2026.

GadgetHunter: Region-Based Neuro-Symbolic Detection of Java Deserialization Vulnerabilities 9

Algorithm 1: Dispatch- and Resolution-Aware Region Partitioning
Input: Candidate gadget chain 𝜋 = ⟨𝑒1, . . . , 𝑒𝑛 ⟩ ∈ Ĝ, where each 𝑒𝑖 = (𝑐𝑖 ,𝑚𝑖 , 𝑘𝑖 , 𝜌𝑖) with 𝑐𝑖 : call site,𝑚𝑖 : callee

method (signature), 𝑘𝑖 ∈ {STATIC, SPECIAL, VIRTUAL, INTERFACE, DYNAMIC}: JVM call kind (opcode), 𝜌𝑖 :
receiver abstraction; and UnresolvedInvoke(𝑒𝑖) indicates target resolvability as in Definition 1.

Output: Partitioned regions R = ⟨𝑅1, 𝑅2, . . . , 𝑅𝑘 ⟩.
1 R ← ∅ // Region sequence

2 𝑅 ← ∅ // Current region buffer

3 for 𝑖 ← 1 to 𝑛 do

4 𝑒curr ← 𝑒𝑖 // Current call edge

5 if 𝑖 = 1 then
6 𝑅 ← ⟨𝑒curr ⟩ // Start with the first edge

7 continue

8 𝑒prev ← 𝑒𝑖−1 // Previous call edge

9 if 𝑘𝑖 ∈ {STATIC, SPECIAL} and UnresolvedInvoke(𝑒curr) then
10 if 𝑅 ≠ ∅ then
11 R ← R ◦ 𝑅
12 R ← R ◦ ⟨𝑒curr ⟩ // Treat as singleton

13 𝑅 ← ∅ // Reset buffer

14 else if 𝑘𝑖 ∈ {VIRTUAL, INTERFACE, DYNAMIC} and
(
𝑚𝑖 ≠𝑚𝑖−1 or 𝑘𝑖 ≠ 𝑘𝑖−1 or 𝜌𝑖 ≠ 𝜌𝑖−1

)
then

15 if 𝑅 ≠ ∅ then
16 R ← R ◦ 𝑅 // Commit current region

17 𝑅 ← ⟨𝑒curr ⟩ // Start new region

18 else

19 𝑅 ← 𝑅 ◦ 𝑒curr // Append to current region

20 if 𝑅 ≠ ∅ then
21 R ← R ◦ 𝑅 // Commit final region

22 return R

edges, and Doop may omit facts in its pointer-analysis database. While our formal rule relies solely
on target resolvability, such indicators serve as practical heuristics to detect unresolved edges
during implementation and to enforce precise region boundaries.

Algorithm 1 sequentially processes gadget chains to partition them based on dispatch semantics
and target resolvability, ensuring that each region contains only statically analyzable transitions
while explicitly marking boundaries that require LLM-based reasoning. For statically dispatched
calls (STATIC or SPECIAL), the algorithm evaluates UnresolvedInvoke(𝑒) (line 9): unresolvable calls
terminate the current region and form singleton regions, while resolvable calls merge into the
current region. For dynamically dispatched calls (VIRTUAL, INTERFACE, or DYNAMIC), the algorithm
conservatively inserts region boundaries, grouping consecutive dynamic edges only when both
receiver abstraction and invocation type remain unchanged (line 14) to preserve local semantic
coherence. Finally, any residual region is committed to R (line 21), yielding a decomposition where
intra-region reasoning relies on precise static analysis while inter-region transitions are delegated
to LLM-based semantic inference.

3.4.2 Handling Anonymous and Inner Classes in Gadget Chain Analysis. Anonymous classes are
common in Java-based gadget chains, particularly in deserialization scenarios that rely on dynamic
method invocation. These classes are compiler-generated and lack standalone source files, often
encoded with identifiers such as dgm$1054. As a result, their semantics are typically opaque to
static analysis, resulting in incomplete representations of the chain. This limitation is especially

, Vol. 1, No. 1, Article . Publication date: February 2026.

10 Kaixuan Li, Jian Zhang, Chong Wang, Sen Chen, Min Zhang, Zong Cao, and Yang Liu

You are a Java deserialization vulnerability specialist. Decide if the call from the source method
to the target method can execute during normal control-flow.
<TASK>
Think it step by step and determine if the call *may* execute for **any** feasible program
state. Treat variables as unconstrained unless a guard is provably impossible.
Return:
 REACHABLE or UNREACHABLE(<reason>) if the call is impossible under *all* states.
<INPUT>
<CODE>{CALL_SITE_SOURCE_CODE}</CODE>
<CALL_EDGE>
{CALLER_SIG, TAINT_LABEL,CALLEE_SIG} , taint propagation labels: -3 means the return
value is tainted, -1 means the `this` is tainted, 0/1/... means the n-th parameter is tainted.
Note: Constraints come from static analysis and may be incomplete.
</CALL_EDGE>
</INPUT>
<OUTPUT_FORMAT>
REACHABLE (NO reason given)| UNREACHABLE (GIVE a short reason)
</OUTPUT_FORMAT>
<EXAMPLE>{EXAMPLE}</EXAMPLE>
</TASK>

Prompt for Region-Based Semantic Reachability Analysis

Fig. 3. Prompt template for reachability analysis.

You are a Java deserialization vulnerability specialist. Analyze the vulnerability-oriented
semantics and runtime feasibility analysis.
<TASK>
Think it step by step and extract deserialization-relevant constraints from the given method and call
edge.
<INPUT>:
<GADGET_SIG>{FULL_METHOD_SIGNATURE}</GADGET_SIG>
<CODE>{SOURCE_CODE}</CODE>
{CALLER_SIG, TAINT_LABEL,CALLEE_SIG}
</INPUT>
<OUTPUT_FORMAT>
You must output strict JSON with four keys:
- vars: list of { "name":str, "kind": this/argN/field.x/ret, "constraint": constant value or type }
- flow: list of strings "src -> dst", where src,dst ∈ {this,argN,field.x,ret}
- guard: list of blocking predicates, e.g.,
 (nonnull(x) | type(x,Cls) | cmp(a=="CONST") | range(l<x<h) | always_throw | early_return)
- runtime: list of JVM-level feasibility constraints, e.g.,
 (reflection_accessible(C.f) | serializable(Type)
 | module_opens(module,pkg) | class_available(C)
 | not_anonymous_class(obj) | cast_compatible(src,dst))
</OUTPUT_FORMAT>
<EXAMPLE>{EXAMPLE}</EXAMPLE>
</TASK>

Prompt for Gadget Summary and Constraint Extraction

Fig. 4. Prompt template for JDV constraints extraction.

problematic when the subsequent analysis relies on semantic reasoning to confirm path feasibility
and exploitability.

To address this, we reconstruct the surrounding context of such classes by first inferring their host
class based on naming conventions and domain knowledge of common libraries. For example, the
identifier dgm$1054 can be associated with DefaultGroovyMethodswithin the Groovy runtime.We
then identify the lexical scope in which the anonymous class is instantiated and extract the enclosing
method body as a coherent semantic unit. This extracted context serves as an approximation of the
anonymous class’s behavior, enabling the model to reason about its role in the chain. For instance,
when analyzing a chain containing dgm$1054:invoke, the recovered context clarifies its function in
facilitating reflective invocation, a commonmechanism for triggeringmethod calls in deserialization
exploits. This mitigates the limitations of static analysis in handling compiler-generated constructs,
ensuring that downstream semantic analysis remains informed and effective.

3.4.3 Semantic Reachability Analysis via LLMs. Built on the region-based decomposition 𝜋 =

𝜋1∥𝜋2∥ · · · ∥𝜋𝑘 , we further conduct semantic reachability analysis via LLM reasoning across inter-
region boundaries. Formally, let Boundaries(𝜋) = {(𝑚𝑖

out,𝑚
𝑖+1
in) | 1 ≤ 𝑖 < 𝑘} denote all inter-region

transitions in chain 𝜋 , where𝑚𝑖
out is the last method in region 𝜋𝑖 and𝑚𝑖+1

in is the first method in
region 𝜋𝑖+1. We define the LLM-based semantic reachability oracle as:

LLMReach(𝑚out,𝑚in, context) :M ×M × Context→ {true, false}
Our goal is to determine the set of semantically reachable chains:

Ĝreach = {𝜋 ∈ Ĝ | ∀(𝑚out,𝑚in) ∈ Boundaries(𝜋), LLMReach(𝑚out,𝑚in, context) = true}
We process each candidate chain 𝜋 in a top-down manner, starting from the deserialization entry

point. For each inter-region transition (𝑚out,𝑚in) ∈ Boundaries(𝜋), we construct a semantic context
context(𝑚out,𝑚in) and leverage LLM reasoning to determine transition feasibility. This approach is
motivated by the structural characteristics of deserialization vulnerabilities: most exploitable chains
involve transitions through well-defined callback methods (readObject, readResolve, equals,
hashCode, compareTo) where calling context is locally observable, and many inter-region transi-
tions represent lightweight bridging patterns (map lookups, collection access, simple delegation)
rather than complex control flows.
Given an inter-region edge (𝑚out,𝑚in) with calling edge 𝑒 = ⟨𝑚out, 𝑠,𝑚in⟩ at statement 𝑠 ,

we extract semantic context context(𝑚out,𝑚in) comprising the caller’s complete method body

, Vol. 1, No. 1, Article . Publication date: February 2026.

GadgetHunter: Region-Based Neuro-Symbolic Detection of Java Deserialization Vulnerabilities 11

(AST, Javadoc, enclosing class environment), call site information including JVM invoke types
(as shown in Table 2), and taint annotations for receiver and parameters. The LLM then analyzes
context(𝑚out,𝑚in) to examine type narrowing at the call site, explicit guards and early-exit excep-
tions, aliasing relationships between parameters and fields, literal patterns constraining parameter
values, and deserialization lifecycle positioning.

For cases such as transitions involving framework event buses, script engines, or configuration-
driven dispatch, the local analysis [12] is insufficient; so we apply conservative estimation following
a worst-case adversary assumption [14]. When LLMReach(𝑚out,𝑚in, context) is undecidable and
the missing prerequisites are typically attacker-controlled in deserialization scenarios (e.g., object
field values, map key shapes, comparator instances), we conservatively retain the chain and record
these prerequisites as assumptions for the feasibility phase. The whole analysis set an early-stop
mechanism [32], where it terminates early if any transition is determined to be unreachable;
otherwise, it continues until all inter-region edges have been validated.

Prompt Design. As illustrated in Figure 3, our prompt template adopts chain-of-thought (CoT) [43]
and in-context learning (ICL) [15] prompting strategies to encourage intermediate reasoning before
final judgment, yielding more consistent and interpretable results. Additionally, we follow the best
practices to employ a schema-constrained format [2], i.e., in a predefined XML format, making it
easier for LLM to parse.

3.5 JDV Exploitation-Oriented Path Feasibility Analysis
While Stage 2 establishes semantic reachability and produces Ĝreach ⊆ Ĝ, it does not answer the
fundamental question for deserialization exploit construction: does there exist a serializable object
that can successfully traverse the entire gadget chain? Formally, given a semantically reachable
chain 𝜋 = ⟨𝑚0,𝑚1, . . . ,𝑚𝑛⟩ ∈ Ĝreach where𝑚0 ∈ S𝑠𝑟𝑐 and𝑚𝑛 ∈ S𝑠𝑖𝑛𝑘 , the question becomes: does
there exist a concrete payload object obj such that when obj is deserialized and triggers𝑚0, the
subsequent execution can successfully traverse all intermediate method calls 𝑚1, . . . ,𝑚𝑛−1 and
reach the sink𝑚𝑛 without constraint violations?
We address this through deserialization-oriented path feasibility analysis that models the con-

straint satisfaction problem inherent in gadget chain exploitation. Given a semantically reach-
able chain 𝜋 = ⟨𝑚1, . . . ,𝑚𝑛⟩ ∈ Ĝreach, we extract and compose per-gadget constraint summaries
using a semantic quadruple 𝑆𝑖 = ⟨Vars𝑖 , Flow𝑖 ,Guard𝑖 ,Runtime𝑖⟩, where Vars𝑖 captures serializ-
able object requirements for method𝑚𝑖 , Flow𝑖 models value propagation across method bound-
aries, Guard𝑖 represents runtime conditions that must hold for 𝑚𝑖 to execute successfully, and
Runtime𝑖 addresses JVM runtime limitations. The chain-level feasibility condition is the conjunc-
tion Φ(𝜋) = ∧𝑛

𝑖=1
(
Vars𝑖 ∧ Flow𝑖 ∧ Guard𝑖 ∧ Runtime𝑖

)
, and 𝜋 is exploitable iff SAT(Φ(𝜋)) holds,

meaning there exists a concrete payload object satisfying all constraints. The final set of exploitable
gadget chains is: G = {𝜋 ∈ Ĝreach | SAT(Φ(𝜋))}.

3.5.1 JDV Exploitation-Oriented Constraint Extraction. To distinguish exploitable gadget chains
from spurious call graph paths, we perform exploitation-oriented constraint extraction that captures
the concrete requirements for successful payload construction. The fundamental challenge in JDV
exploitation is that static call graphs overestimate reachability [34, 38]: not every path corresponds
to a feasible execution with concrete payload objects. Drawing from constraint-based program
analysis [1, 12] and symbolic execution principles [5, 21], we identify four orthogonal constraint
categories that collectively determine gadget chain exploitability. We model each method𝑚𝑖 in
chain 𝜋 using constraint quadruple 𝑆𝑖 = ⟨Vars𝑖 , Flow𝑖 ,Guard𝑖 ,Runtime𝑖⟩, where each constraint
type addresses a fundamental requirement for successful JDV exploitation:

, Vol. 1, No. 1, Article . Publication date: February 2026.

12 Kaixuan Li, Jian Zhang, Chong Wang, Sen Chen, Min Zhang, Zong Cao, and Yang Liu

Table 3. Constraint extraction for motivating example (Figure 1).

Gadget Vars Flow Guard Runtime

AnnotationInvocationHandler.readObject memberValues is Map this.memberValues→ entrySet() — serializable(AnnotationInvocationHandler)
TransformedMap.checkSetValue valueTransformer is Transformer this.valueTransformer→ transform() — —
ChainedTransformer.transform iTransformers is Transformer[] this.iTransformers[i]→ transform() i < iTransformers.length —
InvokerTransformer.transform iMethodName == "exec" this.iArgs→ Method.invoke() nonnull(input) reflectionAccessible(method)

Variable Constraints (Vars): Capture the object state requirements inherent to deserialization
attacks. Since JDV payloads are serialized objects with specific field values, attackers must control
object fields to trigger desired behaviors (e.g., InvokerTransformer.iMethodName = "exec" to
invoke Runtime.exec()). This reflects the core principle that deserialization attacks manipulate
object state to subvert intended program logic [18].

Data FlowConstraints (Flow):Model value propagation requirements across method boundaries,
ensuring that data flows from sources (serialized fields) to sinks (dangerous operations) through
the gadget chain. This is essential because gadget chains are fundamentally data flow paths where
malicious values must propagate correctly [3, 29]. For instance, the valueTransformer field must
flow to enable transform() calls in the CC1 chain.
Path Guard Constraints (Guard): Represent control flow feasibility conditions that determine

whether execution can reach dangerous code paths. These constraints capture runtime conditions
(null checks, loop bounds, conditional branches) that must be satisfied for successful exploitation [19,
37]. Guards are crucial because many gadget methods contain defensive checks that can prevent
exploitation if not properly handled.
Runtime Feasibility Constraints (Runtime): Address JVM deployment and reflection con-

straints that affect exploitation in real environments. These include serialization compatibility, class
availability, security manager restrictions, and reflection accessibility [30, 31]. Runtime constraints
bridge the gap between theoretical exploitability and practical deployment feasibility.

We employ LLM-based semantic analysis to extract these constraints from method source code
and call-site context. As illustrated in Figure 4, our prompt template follows an aforementioned de-
sign: (i) task specification (constraint identification), (ii) method source code with taint annotations,
and (iii) schema-constrained output requiring constraint categorization with justification. We also
adopt CoT and ICL prompting to encourage systematic constraint identification. The extracted
constraints are aggregated into a global chain constraint Φ(𝜋) finally.

CC1 chain analysis. Consider the CC1 chain from our motivating example (Figure 1). Table 3
shows the extracted constraints for the CC1 chain. For AnnotationInvocationHandler.read
Object(), we extract Vars1 requiring memberValues to be a Map, Flow1 capturing the flow from
this.memberValues to entrySet(), and Runtime1 ensuring the class is serializable. Similarly,
InvokerTransformer.transform() requiresVars4 with iMethodName = "exec", Flow4 from this.
iArgs to Method.invoke(), Guard4 ensuring non-null input, and Runtime4 verifying reflection
accessibility. Given the global constraint formula Φ(𝜋), we determine chain feasibility through
satisfiability solving using SMT solvers. The chain 𝜋 is exploitable iff SAT(Φ(𝜋)) holds, meaning
there exists a concrete payload object satisfying all constraints. The final set of exploitable gadget
chains is: G = {𝜋 ∈ Ĝreach | SAT(Φ(𝜋))}. When satisfiable, the SMT solver provides a concrete
model that assigns values to constraint variables, which can guide payload construction.

3.5.2 Constraint Lowering to SMT & Solving. After extraction, we unify all gadget summaries
into the global constraint Φ(𝜋) by conjoining constraint atoms across all Vars𝑖 , Flow𝑖 , Guard𝑖 ,
and Runtime𝑖 components. We compile Φ(𝜋) to SMT formulae using a lightweight intermediate
representation where type constraints become predicates (e.g., instanceof(𝑥,𝐶), accessible(𝐶)),

, Vol. 1, No. 1, Article . Publication date: February 2026.

GadgetHunter: Region-Based Neuro-Symbolic Detection of Java Deserialization Vulnerabilities 13

aliasing relationships translate to equality assertions, state transitions follow single-assignment
semantics, and method resolution uses resolves(𝐶,𝑚, 𝜎) predicates.

Based on the obtained Φ(𝜋), we perform a structured lowering to Z3 SMT-LIB format, covering
Java type-system fragments (e.g., subtyping, nullability) via axioms. When the generated Z3 script
fails to parse or produces errors, we employ an LLM to analyze error messages and suggest repairs.
The repair process is bounded with a maximum of 3 iterations to prevent infinite loops. Upon
successful constraint solving, if SAT(Φ(𝜋)) holds, Z3 provides a concrete model that assigns values
to constraint variables. This model can guide payload construction by providing specific field
assignments and object configurations. This separation keeps the extraction flexible while ensuring
the final feasibility judgment is auditable and reproducible.

4 IMPLEMENTATION
We implemented GadgetHunter using Java and Python. The taint analysis module is customized
from Flash [44], whose backend is Tai-e [40]. Tai-e supports flexible configuration of taint sources
and sinks, which we extend to capture deserialization-specific semantics. We further modify Flash
components to extract JVM-level information required by the LLM module. For gadget context
retrieval, we implement it based on Tree-sitter [41]. For semantic reasoning, we adopt GPT-4.1 as the
LLM backend, following its demonstrated effectiveness in recent program analysis tasks [25, 27, 42].
For the SMT solver, we use Z3 [13], and the maximum fixing iterations for Z3 are set to 3.

5 EXPERIMENTAL EVALUATION
5.1 Setup
5.1.1 Research questions. We evaluate the performance of GadgetHunter and compare it with
state-of-the-art tools via addressing four main research questions below:
• RQ1. Effectiveness.How effective is GadgetHunter in detecting gadget chainswhen compared
with SOTA?
• RQ2. Ablation Study. What impact does each component of GadgetHunter have on the
overall performance?
• RQ3. Efficiency. How efficient is GadgetHunter in gadget chain detection in terms of time
and financial cost?
• RQ4: Practicality. How does GadgetHunter perform in analyzing recently real-world Java
applications in practice?

5.1.2 Baselines. We define two criteria for baseline selection: ❶ Tools must represent state-of-the-
art static or hybrid approaches for gadget-chain detection. ❷ Tools must be publicly available or
have reproducible evaluation results.

Following these criteria, we include six representative tools in our evaluation: (i) Static approaches:
GadgetInspector, Tabby [10], and Flash [44]; (ii) Hybrid approaches: Crystallizer [39], ODDFuzz [6],
and JDD [9]. Note that ODDFuzz is not open-sourced, so we reuse the evaluation results reported
in its paper; JDD does not release its fuzzing module; we contacted and requested their raw
evaluation results. Other tools are excluded for the following reasons. ❶ Serianalyzer [4] is omitted
due to consistently inferior performance compared with GadgetInspector, Tabby, and Flash in
prior evaluations. ❷ GCMiner [7] and SerdeSniffer [28] are excluded because their source code is
unavailable and lacks reproducible results, making the reproducibility non-trivial. ❸ SerHybrid [33]
was excluded because ODDFuzz and JDD achieve better reported results.

5.1.3 Benchmark. Following prior work [4, 6, 7, 9, 10, 44], we evaluate on the widely used
ysoserial benchmark [17], which contains 34 established gadget chains from real-world Java

, Vol. 1, No. 1, Article . Publication date: February 2026.

14 Kaixuan Li, Jian Zhang, Chong Wang, Sen Chen, Min Zhang, Zong Cao, and Yang Liu

Table 4. Gadget chain detection comparison among six SOTA tools and GadgetHunter (our approach). The

number in parentheses indicates the confirmed known chains by directed fuzzing.

GadgetInspector Tabby Crystallizer ODDFuzz JDD Flash GadgetHunter

Application Known All TP All TP All TP All TP All TP All TP All TP

AspectJWeaver 1 6 0 1 1 85 3 9 (1) 0 16 (6) 6 1,829 5 28 17
BeanShell 1 2 0 3 1 4 1 8 (0) 0 0 (0) 0 632 13 5 5

C3P0 1 2 0 6 4 0 0 13 (1) 1 15 (0) 0 6 6 4 4
Click 1 4 0 1 1 0 0 8 (1) 1 34 (1) 1 355 1 0 0

Clojure 1 12 1 2 1 0 0 184 (1) 1 169 (3) 3 13 1 7 4
CommonsBeantuils 1 2 0 1 1 2 1 8 (1) 1 9 (1) 1 320 1 10 5

CommonsCollections 5 4 1 17 13 80 6 97 (5) 3 196 (53) 53 4,975 26 44 38
CommonsCollections4 2 4 0 18 13 4 4 112 (2) 2 209 (26) 26 1,829 17 51 34

FileUpload 1 3 0 2 2 0 0 8 (0) 0 1 (1) 1 2 2 2 2
Groovy 1 4 0 2 0 7 1 13 (0) 0 580 (7) 7 489 0 11 8

Hibernate 2 3 0 4 4 0 0 8 (2) 2 0 (0) 0 0 0 4 2
JavassistWeld 1 2 0 3 1 0 0 8 (0) 0 2 (1) 1 7 1 3 2

JbossInterceptors 1 2 0 3 1 0 0 8 (0) 0 2 (1) 1 7 1 6 4
JDK 4 5 0 0 0 0 0 9 (1) 1 16 (8) 8 0 0 0 0

JSON 1 2 0 0 0 0 0 9 (0) 0 0 (0) 0 91 0 2 0
Jython 1 42 1 2 0 0 0 32 (1) 0 0 (0) 0 56 0 34 19

MozillaRhino 2 3 0 1 1 6 0 7 (2) 2 10 (1) 1 679 0 11 10
Myfaces 2 2 0 1 1 0 0 7 (0) 0 283 (3) 3 131 8 69 27
ROME 1 2 0 2 2 8 2 5 (1) 1 853 (5) 5 330 10 36 13
Spring 2 2 0 2 0 0 0 10 (0) 0 188 (0) 0 633 2 0 0
Vaadin 1 5 0 1 1 25 2 13 (1) 1 753 (39) 39 182 5 13 10
Wicket 1 3 0 2 2 0 0 7 (0) 0 1 (1) 1 2 2 2 2
Total 34 116 3 74 50 221 20 583 (20) 16 3,337 (157) 157 12,568 101 362 221

applications. Although extended datasets have been reported by JDD and Flash, we deliberately rely
on ysoserial for two reasons: ❶ The other datasets are not publicly available and lack disclosed
ground truth, which makes them unsuitable for reliable and reproducible evaluation. ❷ Several
baseline tools are closed-source; using the common ysoserial benchmark ensures fair and direct
comparison. We also note the recent Gleipner dataset [22], designed as a synthetic benchmark
for JDVs. While it is valuable for controlled experiments, it does not fully capture real-world
exploitability and, like the extended datasets, cannot be used for fair cross-tool comparison with
closed-source baselines. For RQ4, we further construct an evaluation on 8 disclosed gadget chains
to assess GadgetHunter’s practicality.

5.1.4 Experiment. All experiments were conducted on a machine with an Intel® Xeon® Gold
6248 CPU running at 2.50 GHz, with 188 GB of RAM and Ubuntu 22.04. (64-bit) as the operating
system. To reduce randomness, we conducted three repetitions of each experiment and reported
the average statistical results. The LLM temperature is set to 0.2, and all experiments are conducted
under Java 8.

5.2 RQ1: Effectiveness Analysis
5.2.1 Overall results. Table 4 illustrates the main results of gadget-chain detection across represen-
tative SOTA tools on the ysoserial benchmark. Each cell reports both the total number of gadget
chains identified (All) and the subset confirmed as exploitable (True Positive, TP). For tools with
dynamic validation modules (Crystallizer, ODDFuzz, and JDD), Crystallizer’s design differs: it uses
static analysis to identify candidate chains and dynamic analysis to generate concrete payloads,
but only outputs the gadget chains confirmed by its dynamic module. By contrast, ODDFuzz and
JDD expose both static and dynamically validated results. Therefore, the TP values correspond to
results verified by their dynamic phase, with the numbers in parentheses of ODDFuzz and JDD
indicating the confirmed chains validated through directed fuzzing.

Overall, the results reveal clear differences consistent with each tool’s design. GadgetInspector
produces limited coverage and very few exploitable chains due to its reliance on classical taint-based
static analysis. Tabby detects a large number of chains with its CPG-based queries but suffers

, Vol. 1, No. 1, Article . Publication date: February 2026.

GadgetHunter: Region-Based Neuro-Symbolic Detection of Java Deserialization Vulnerabilities 15

from high false positives. Crystallizer achieves only modest coverage, reflecting its reliance on
limited sink modeling and dynamic probing. ODDFuzz benefits from directed fuzzing to validate
exploits, but its coverage is bounded by fuzzing budgets. JDD reuses historical gadget fragments,
yielding significantly more detections, although its static analysis module leads to severe false-
positives. Flash expands call-graph edges through deserialization-guided heuristics, covering many
candidates, yet its pruning strategy is not fine-grained enough to filter infeasible paths.
In contrast, GadgetHunter consistently outperforms all baselines, detecting 21–32 chains

across targets and confirming 8–29 as exploitable. Crucially, it reduces false positives by 12–85%
compared with JDD while maintaining high coverage, highlighting the benefit of combining static
scalability with LLM-guided reasoning and SMT-based feasibility validation.

GadgetInspector Tabby Crystallizer ODDFuzz JDD Flash GadgetHunter
0

20

40

60

80

100

FP
R/

FN
R

(%
)

97.4%91.2% 92.5%

41.2%

91.0%

61.8%

20.0%

52.9%

0.0%

32.4%

99.2%

38.2% 39.0%
29.4%

FPR FNR #New GCs

0

50

100

150

200

#
N

ew
 G

Cs

0
29

7 0

147

80

197

Fig. 5. False positive/negative analysis of GadgetHunter

with baselines.

SA SA_LLMD SA_SemReach SA_LLMC GadgetHunter
0

20

40

60

80

100

FP
R/

FN
R

(%
)

91.1%

23.5%

88.4%

11.8%

82.3%

26.5%
16.7%

44.1% 39.0%
29.4%

FPR FNR #New GCs

0

50

100

150

200

#
N

ew
 G

Cs

206
180

198

6

197

Fig. 6. Contribution of individual components

within GadgetHunter.

5.2.2 False Positive and False Negative Rates. To quantify precision and recall, we compute false
positive rate (FPR) and false negative rate (FNR) following prior work [9, 44]: FPR =

#false positives
#all detected chains ,

FNR = #missed known chains
#total known chains . Here, false positives are chains reported but not exploitable, while false

negatives are known gadget chains in the benchmark missed by the tool. Figure 5 reports the FPRs
and FNRs of each tool together with the number of “new” gadget chains beyond the benchmark.
GadgetInspector, Tabby, and Flash exhibit extremely high FPR (above 90%), consistent with their
over-inclusive expansions. Crystallizer suffers from high FNR (over 60%), failing to recover many
known chains. ODDFuzz and JDD improve precision by validating chains through fuzzing, but
remain limited by the inherent difficulty of exploring the constraints. ODDFuzz still reports 20%
false positives, since its directed fuzzing only considers class hierarchies inferred from gadget
chains and often generates incorrect object layouts. JDD eliminates false positives by encoding “if”
conditions into fuzzing to guide object construction, but its reliance on fuzzing still leaves many
feasible chains unexplored. This underscores the need for semantic constraints beyond fuzzing.
By comparison, GadgetHunter achieves a balanced combined error rate: attains an FPR at

38.95%, FNR at 29.41%, and identifies 197 new chains (50 more than JDD), demonstrating improved
precision as well as better generalization across diverse projects. The superior performance of
GadgetHunter is attributed to its feasibility-aware design. Static-only approaches (e.g., Gad-
getInspector, Tabby, Flash) either under-approximate by missing reflection or dynamic-dispatch
edges, leading to false negatives, or over-approximate by including all possible edges, resulting in
excessive false positives. Hybrid approaches with dynamic validation (e.g., Crystallizer, ODDFuzz,
JDD) provide concrete confirmation, but their effectiveness is constrained by fuzzing budgets and
the difficulty of generating valid payloads, which limits coverage. In contrast, GadgetHunter
partitions candidate gadget chains into regions: intra-region reasoning is handled by static taint
analysis for scalability, while inter-region ambiguity is resolved by LLM-based semantic inference.
Surviving chains are abstracted into JDV exploitation-oriented constraints and discharged as SMT
constraints, which precisely eliminate infeasible paths. This design enables GadgetHunter to
(i) retain high recall by preserving potential dynamic edges, (ii) reduce false positives through

, Vol. 1, No. 1, Article . Publication date: February 2026.

16 Kaixuan Li, Jian Zhang, Chong Wang, Sen Chen, Min Zhang, Zong Cao, and Yang Liu

semantic pruning and SMT-backed feasibility checking, and (iii) generalize beyond the benchmark
by identifying 197 new gadget chains.

Answer to RQ1: Compared with the six baselines, GadgetHunter demonstrated superior
effectiveness, achieving higher coverage of known gadget chains, substantially lower false positive
and false negative rates (reducing FPR by 12–85% and FNR by up to 32%), and discovering 197
new chains beyond the benchmark.

5.3 RQ2: Ablation Analysis
To assess the contribution of each component in GadgetHunter, we construct ablation variants
that progressively extend a static analysis baseline. Specifically, we consider four variants as follows:

• SA (Static Analysis Only): Performs only interprocedural taint propagation. This variant serves
as the pure static baseline.
• SA_SemReach (Static Analysis + Semantic Reachability): removes the feasibility analysis.
• SA_LLMD (Static Analysis + LLM Direct): Builds on SA by letting an LLM directly validate
candidate chains in a black-box manner.
• SA_LLMC (Static Analysis + LLM Constraint): Inspired by BugLens [25], replaces the feasibility
analysis by using LLMs conduct end-to-end constraint extraction and analysis to decide feasibility.

5.3.1 Results. Figure 6 reports FPR, FNR, and the number of new gadget chains for each ablation
variant. We discuss them in terms of component contribution. SA shows pure taint propagation
yields the largest number of candidates but only 8.9% (237/2, 662) valid ones, resulting in FPR
91.13%. This confirms that static analysis ensures high coverage for exploitable chains, but suffers
from massive path explosion. Compared to SA, SA_SemReach’s performance reflects that our
Reachability Analysis module cuts candidates almost by half, reducing FPR moderately (83.57%)
while keeping FNR roughly stable. This shows that our Reachability Analysis module is effective in
removing semantically unreachable chains.
SA_LLMD achieves the best FNR (11.76%) among all baselines by confirming more exact ex-

ploitable chains. However, it caused numerous false positives (FPR = 88.44%), as the LLM tends to
over-accept semantically plausible yet infeasible chains. Additionally, new gadget-chain findings
remain high at 180 ones, indicating SA_LLMD’s generalization potential but at the cost of accuracy.
The effectiveness of SA_LLMC suggests that when LLMs produce constraints and decide feasibility
themselves, FPR drops sharply to 16.67%, but false negatives increase sharply (FNR 44.12%). This
variant illustrates the risk of over-pruning: without solver-backed consistency checks, brittle con-
straints filter out not only false alarms but also many real chains. Compared with these variants,
Figure 6 shows that GadgetHunter balances both sides: FPR is reduced to 38.95%, far lower
than SA or SA_LLMD, with its FNR preserved at 26.47%, on par with SA_SemReach. Compared
to SA_LLMD, the feasibility module prevents over-acceptance, thereby the FPR decreases from
88.44% to 38.95%. Compared to SA_LLMC, solver-backed reasoning restores recall, thereby the FNR
decreases from 44.12%to 26.47%, with newly detected gadget chains increasing to 197.

5.3.2 Region partitioning analysis. We further examined the distribution of static and dynamic
regions across projects (Figure 7). Across all 2,662 mined gadget chains on the ysoserial bench-
mark, we observed an average of 10.3 gadgets and 9.1 regions per chain, with only 14.7% of regions
being fully resolved by static analysis. This distribution indicates that region partitioning is not an
artificial decomposition: the number of regions strongly correlates with gadget counts, reflecting
inherent program complexity. Overall, this validates the role of region partitioning in delegating
hard cases to LLM reasoning while keeping intra-region reasoning purely static and efficient.

, Vol. 1, No. 1, Article . Publication date: February 2026.

GadgetHunter: Region-Based Neuro-Symbolic Detection of Java Deserialization Vulnerabilities 17

Table 6. Efficiency and financial cost of GadgetHunter on the ysoserial benchmark.

Application #Chains Duration (s) Avg. duration (s) Cost ($) Avg. cost ($)

AspectJweaver 162 4,047.86 24.99 5.65 0.03
BeanShell 185 2,895.66 15.65 6.61 0.04

C3P0 6 276.25 46.04 0.28 0.05
Click 9 34.31 3.81 0.07 0.01

Clojure 13 628.73 62.87 4.14 0.41
CommonsBeantuils 101 1,292.38 12.8 2.71 0.03

CommonsCollections 188 8,531.84 45.38 8.43 0.04
CommonsCollections4 276 6,678.67 24.2 11.96 0.04

FileUpload 2 79.05 39.52 0.11 0.05
Groovy 73 1,599.34 21.91 2.79 0.04

Hibernate 6 297.71 49.62 0.44 0.07
JavassistWeld 4 282.71 70.68 0.34 0.09

JbossInterceptors 8 725.59 48.37 0.73 0.05
JDK 19 725.96 38.21 1.12 0.06

JSON 294 2,813.19 9.57 6.07 0.02
Jython 51 7,751.75 152 4.26 0.08

MozillaRhino 471 7,883.89 16.74 13.16 0.03
MyFaces 124 5,623.88 45.35 6.76 0.05

Rome 398 5,945.58 14.94 12.34 0.03
Spring 11 85.00 7.73 0.17 0.02
Vaadin 259 4,317.78 16.67 6.95 0.03
Wicket 2 214.59 107.29 0.15 0.08

Total/Avg. 2,666 62,731.72 23.53 95.24 0.04

Answer to RQ2: Each module in GadgetHunter plays a distinct role: static analysis ensures
minimizing false negatives, the reachability analysis prunes trivially invalid chains, and path-
feasibility analysis provides fine-grained feasibility checking. Together, these components achieve
a principled trade-off between recall and precision, which neither pure static analysis nor direct
LLM validation can achieve alone.

File
Uplo

ad
Wick

et
C3P

0

Jav
ass

istW
eld

jdk
7u

21
Cloju

re

Hibe
rna

te
JBoss

MyFa
ces

ROME
Groo

vy

Com
mon

sC
olle

cti
on

s3

Aspe
ctJ

wea
ve

r

Com
mon

sC
olle

cti
on

s4

Com
mon

sB
ea

nu
tils

Jyt
ho

n
Click

Va
ad

in

Bea
nS

he
ll

Mozi
llaR

hin
o
JSO

N
Sp

rin
g

0

5

10

15

20

1.0
1.0

1.5
1.0

2.5

1.5

3.2
2.5

3.5
2.7

5.5

4.3

6.0
5.0

6.1
4.4

6.1
5.6

7.0

5.5

8.6
7.7

8.7
7.6

8.9
7.8

9.1

7.9

9.5

6.1

9.8
7.2

10.9

5.4

11.1

9.0

11.7

9.2

11.7

7.9

17.3

10.8

22.4
18.2Static Regions

Dynamic Regions
Gadget Count

Fig. 7. The average number of regions (gadgets) per

chain across applications in the ysoserial benchmark.

Table 5. Practicality evaluation on recent JDVs.

CVE ID Application Stars #Known Detected (#Chains)

CVE-2024-23636 Sofa-RPC 41k 1 ✓(1)
CVE-2025-24813 Tomcat 7.9k 1 ✓(13)
CVE-2022-1471 SnakeYaml – 2 ✓(1)
CVE-2023-23638 Dubbo 41.3k 4 ✓(3)

5.4 RQ3: Efficiency and Cost Analysis
Table 6 reports the efficiency and financial cost of running GadgetHunter on the ysoserial bench-
mark. For each application, we record the total number of candidate chains processed (#Chains),
total analysis time (Duration), average per-chain time, total cost, and average per-chain cost. Overall,
GadgetHunter analyzes 2,662 chains in about 62.7k seconds, with an average of 23.53s per chain
and an average cost of $0.04 per chain.

The results reveal substantial variation across projects. Smaller-scale projects such as Click and
Spring complete within seconds per chain, while reflection-heavy frameworks like Clojure and
Jython require significantly longer times (up to 152s per chain). This discrepancy aligns with the
proportion of dynamic regions: projects dominated by reflection or dynamic dispatch involve more
ambiguous edges, triggering more LLM queries and larger constraint systems for SMT solving. In
contrast, projects with mostly static gadget flows (e.g., FileUpload,Wicket) remain lightweight.
Despite relying on GPT-4.1, the financial overhead is modest. The total expenditure across

the entire benchmark is $95.24, averaging only $0.04 per chain. Two design choices drive this

, Vol. 1, No. 1, Article . Publication date: February 2026.

18 Kaixuan Li, Jian Zhang, Chong Wang, Sen Chen, Min Zhang, Zong Cao, and Yang Liu

efficiency: (i) region partitioning, which restricts LLM calls to a small set of ambiguous edges rather
than all possible paths, and (ii) summary-based constraint extraction, which reduces token usage
by converting complex code into compact ⟨var, flow, guard⟩ formulas before SMT solving. As
a result, the overall cost remains practical for large-scale evaluation. These findings show that
GadgetHunter scales to thousands of gadget chains with manageable overhead. The efficiency
differences across projects further support the need for region partitioning: it aligns workload with
inherent program complexity, preventing uncontrolled blowup in reflection-heavy code. Meanwhile,
the per-chain cost remains sufficiently low to enable practical deployment in real-world audits.

Answer to RQ3: GadgetHunter demonstrates practical efficiency with modest cost: processing
2,662 gadget chains required only $95.24 in total (about $0.04 per chain). Runtime variation across
projects aligns with the proportion of dynamic regions, underscoring the role of region partitioning
in limiting LLM invocations. By summarizing gadgets into compact constraints before SMT
solving, GadgetHunter controls both execution time and API expenditure, supporting scalable
use in real-world audits.

5.5 RQ4: Practicality Analysis
To evaluate practicality, we applied GadgetHunter to four recently disclosed deserialization
CVEs and three popular open-source applications without previously reported JDVs. As shown
in Table 5, GadgetHunter successfully rediscovered the known gadget chains in all four CVEs
and additionally surfaced several variants.

Across the four CVEs, GadgetHunter detected 18 exploitable chains overall. Counting against
the ground truth, we matched 6 known chains and missed 2 (one in SnakeYaml and one in Dubbo),
yielding an FNR of 25% (2/8). Especially, for Tomcat (CVE-2025-24813), although the advisory
documents only a single chain, GadgetHunter uncovered 12 exploitable variants. Manual analysis
confirms that this RCE leverages CommonsCollections 3.2.1, and GadgetHunter systematically
enumerates feasible edge substitutions within the same chain schema, thereby producing multiple
valid variants beyond the CVE’s minimal record.

Answer to RQ4: GadgetHunter successfully rediscovers 6 out of 8 known gadget chains across
four recent CVEs (detecting 18 exploitable chains in total, with FNR = 25%). This confirms its
practicality in real-world audits, while the Tomcat case illustrates its ability to generalize across
semantically equivalent chain variants.

6 DISCUSSION
6.1 Limitation and Future Work
First, our current evaluation focuses on theoretical exploitability. The feasibility checks conducted
by Z3 constraint solving ensure that the discovered chains are semantically valid, but we have
not yet generated end-to-end proof-of-concept (PoC) exploits to confirm practical exploitability. A
complete PoC generator, guided by the symbolic constraints obtained in GadgetHunter, would be
an important extension to bridge the gap between theoretical feasibility and real-world exploitation.
Second, the integration between static analysis and LLMs in GadgetHunter is essentially

performed as a post-processing step. While this design already improves precision by validating
candidate chains, it leaves room for further improvement. In particular, embedding LLM reasoning
directly into static analysis tasks such as pointer analysis or call-graph construction could signifi-
cantly reduce false negatives. Such interleaving approaches [8] where LLM inference guides the
resolution of hard-to-analyze language features within the analysis itself. Adopting this direction
could enhance the soundness and strengthen the overall robustness of JDV detection.

, Vol. 1, No. 1, Article . Publication date: February 2026.

GadgetHunter: Region-Based Neuro-Symbolic Detection of Java Deserialization Vulnerabilities 19

6.2 Threats to Validity
6.2.1 External threats. ❶ Generalizability. The generalizability of GadgetHunter may be
affected by dataset selection. Tomitigate this, we adopted ysoserial, a widely used JDV benchmark,
and compared GadgetHunter against six SOTA baselines that cover both static-only and hybrid
static–dynamic approaches. Additionally, we extended the evaluation (Section 5.5: RQ4) to practical
settings by including four recently disclosed CVEs. GadgetHunter successfully rediscovered
known gadget chains and revealed new exploitable variants. ❷ Data leakage. Another potential
concern is that LLM training data may contain prior knowledge of the vulnerabilities, which could
artificially inflate performance. We mitigate it in two ways. First, ablation studies showed that
direct LLM reasoning (SA_LLMD) is substantially less effective than our integrated framework,
indicating that the improvements cannot be attributed to memorization. Second, we evaluated two
CVEs (i.e., CVE-2024-23636 and CVE-2025-24813) disclosed after the presumed cutoff date of LLM
training data, which further reduces the likelihood that data leakage explains our results.

6.2.2 Internal threats. Overhead. The use of both LLMs and SMT solving introduces additional
financial and computational costs compared to traditional methods. To mitigate this, we measured
the average cost across all experiments. On the ysoserial benchmark, processing 2,662 gadget
chains required only $95.24 in total, which corresponds to about $0.04 per chain and an average
runtime of 23.53 seconds per chain. These results demonstrate that GadgetHunter achieves
practical efficiency with modest cost. Given ongoing improvements in solver performance and
model efficiency, we expect this overhead to decrease further over time.

7 CONCLUSION
This paper introduces GadgetHunter, a semantic-enhanced framework for detecting Java deseri-
alization gadget chains. By integrating scalable static taint analysis with LLM-guided reachability
reasoning and summary-based path feasibility checking, GadgetHunter addresses the impre-
cision of static analysis under dynamic features and the lack of semantic guidance in feasibility
validation. Our evaluation demonstrates that GadgetHunter achieves notable improvements
in accuracy while maintaining practical financial and time costs, highlighting the potential of
combining static analysis with LLM semantic reasoning for advancing vulnerability detection in
modern Java ecosystems.

8 DATA AVAILABILITY
We open-source GadgetHunter at https://github.com/MarkLee131/GadgetHunter for future JDV
research.

ACKNOWLEDGMENTS
This research/project is supported by A*STAR under the RIE2025 Industry Alignment Fund -
Industry Collaboration Projects (IAF-ICP) Funding Initiative (Award: I2501E0045), as well as cash
and in-kind contribution from the industry partner(s).

REFERENCES
[1] Alexander Aiken. 1999. Introduction to set constraint-based program analysis. Vol. 35. Elsevier. 79–111 pages.
[2] Anthropic. [n. d.]. Use XML Tags to Structure Your Prompts. https://platform.claude.com/docs/en/build-with-

claude/prompt-engineering/use-xml-tags [Online; accessed 2025-09-01].
[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. ACM SIGPLAN Notices 49, 6 (2014), 259–269.

, Vol. 1, No. 1, Article . Publication date: February 2026.

https://github.com/MarkLee131/GadgetHunter
https://platform.claude.com/docs/en/build-with-claude/prompt-engineering/use-xml-tags
https://platform.claude.com/docs/en/build-with-claude/prompt-engineering/use-xml-tags

20 Kaixuan Li, Jian Zhang, Chong Wang, Sen Chen, Min Zhang, Zong Cao, and Yang Liu

[4] Moritz Bechler. [n. d.]. A static byte code analyzer for Java deserialization gadget research. https://github.com/
mbechler/serianalyzer [Online; accessed 2025-09-09].

[5] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing: three decades later. Commun. ACM 56,
2 (2013), 82–90.

[6] Sicong Cao, Biao He, Xiaobing Sun, Yu Ouyang, Chao Zhang, Xiaoxue Wu, Ting Su, Lili Bo, Bin Li, Chuanlei Ma,
Jiajia Li, and Tao Wei. 2023. ODDFuzz: Discovering Java Deserialization Vulnerabilities via Structure-Aware Directed
Greybox Fuzzing. In 2023 IEEE Symposium on Security and Privacy (SP). 2726–2743.

[7] Sicong Cao, Xiaobing Sun, Xiaoxue Wu, Lili Bo, Bin Li, Rongxin Wu, Wei Liu, Biao He, Yu Ouyang, and Jiajia Li. 2023.
Improving Java Deserialization Gadget Chain Mining via Overriding-Guided Object Generation. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). 397–409.

[8] Patrick J. Chapman, Cindy Rubio-González, and Aditya V. Thakur. 2024. Interleaving Static Analysis and LLM
Prompting. In Proceedings of the 13th ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis
(Copenhagen, Denmark) (SOAP 2024). Association for Computing Machinery, New York, NY, USA, 9–17.

[9] Bofei Chen, Lei Zhang, Xinyou Huang, Yinzhi Cao, Keke Lian, Yuan Zhang, and Min Yang. 2024. Efficient Detection of
Java Deserialization Gadget Chains via Bottom-up Gadget Search and Dataflow-aided Payload Construction. In 2024
IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco, CA, USA, 3961–3978.

[10] Xingchen Chen, Baizhu Wang, Ze Jin, Yun Feng, Xianglong Li, Xincheng Feng, and Qixu Liu. 2023. Tabby: Automated
Gadget Chain Detection for Java Deserialization Vulnerabilities. In 2023 53rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). 179–192.

[11] Common Weakness Enumeration. [n. d.]. 2024 CWE Top 10 KEV Weaknesses. https://cwe.mitre.org/top25/archive/
2024/2024_kev_list.html [Online; accessed 2025-09-09].

[12] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (Los Angeles, California) (POPL ’77). Association for Computing Machinery, New York, NY,
USA, 238–252.

[13] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 337–340.

[14] Danny Dolev and Andrew Yao. 2003. On the security of public key protocols. IEEE Transactions on information theory
29, 2 (2003), 198–208.

[15] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu, Tianyu Liu,
et al. 2022. A survey on in-context learning. arXiv preprint arXiv:2301.00234 (2022).

[16] Common Weakness Enumeration. [n. d.]. CWE - CWE-502: Deserialization of Untrusted Data (4.18). https://cwe.
mitre.org/data/definitions/502.html [Online; accessed 2025-09-09].

[17] frohoff. 2025. Ysoserial. (Accessed on 31/01/2025).
[18] Chris Frohoff and Gabriel Lawrence. 2015. Marshalling pickles: how deserializing objects can ruin your day. In

AppSecCali 2015. OWASP.
[19] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed automated random testing. In Proceedings of

the 2005 ACM SIGPLAN conference on Programming language design and implementation. 213–223.
[20] Ian Haken. 2018. Automated discovery of deserialization gadget chains. Proceedings of the Black Hat USA 48 (2018).
[21] James C King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (1976), 385–394.
[22] Bruno Kreyssig and Alexandre Bartel. 2025. Gleipner: A Benchmark for Gadget Chain Detection in Java Deserialization

Vulnerabilities. Proceedings of the ACM on Software Engineering 2, FSE (2025), 1–21.
[23] Bruno Kreyssig, Sabine Houy, Timothée Riom, and Alexandre Bartel. 2025. Sleeping Giants–Activating Dormant Java

Deserialization Gadget Chains through Stealthy Code Changes. arXiv preprint arXiv:2504.20485 (2025).
[24] Bruno Kreyssig, Timothée Riom, Sabine Houy, Alexandre Bartel, and Patrick McDaniel. 2025. Deserialization Gadget

Chains are not a Pathological Problem in Android: an In-Depth Study of Java Gadget Chains in AOSP. arXiv preprint
arXiv:2502.08447 (2025).

[25] Haonan Li, Hang Zhang, Kexin Pei, and Zhiyun Qian. 2025. The Hitchhiker’s Guide to Program Analysis, Part II: Deep
Thoughts by LLMs. arXiv preprint arXiv:2504.11711 (2025).

[26] Yue Li, Tian Tan, and Jingling Xue. 2019. Understanding and analyzing java reflection. ACM Transactions on Software
Engineering and Methodology (TOSEM) 28, 2 (2019), 1–50.

[27] Ziyang Li, Saikat Dutta, and Mayur Naik. 2024. IRIS: LLM-assisted static analysis for detecting security vulnerabilities.
arXiv preprint arXiv:2405.17238 (2024).

[28] Xinrong Liu, He Wang, Meng Xu, and Yuqing Zhang. 2024. SerdeSniffer: Enhancing Java Deserialization Vulnerability
Detection with Function Summaries. In European Symposium on Research in Computer Security. Springer, 174–193.

[29] V Benjamin Livshits and Monica S Lam. 2005. Finding security vulnerabilities in Java applications with static analysis.
USENIX Security Symposium 14 (2005), 271–286.

, Vol. 1, No. 1, Article . Publication date: February 2026.

https://github.com/mbechler/serianalyzer
https://github.com/mbechler/serianalyzer
https://cwe.mitre.org/top25/archive/2024/2024_kev_list.html
https://cwe.mitre.org/top25/archive/2024/2024_kev_list.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/502.html

GadgetHunter: Region-Based Neuro-Symbolic Detection of Java Deserialization Vulnerabilities 21

[30] Oracle Corporation. 2021. Java Object Serialization Specification. https://docs.oracle.com/javase/8/docs/platform/
serialization/spec/serialTOC.html [Online; accessed 2025-09-11].

[31] OWASP Foundation. 2017. Deserialization Cheat Sheet. https://cheatsheetseries.owasp.org/cheatsheets/
Deserialization_Cheat_Sheet.html [Online; accessed 2025-09-11].

[32] Lutz Prechelt. 2002. Early stopping-but when? In Neural Networks: Tricks of the trade. Springer, 55–69.
[33] Shawn Rasheed and Jens Dietrich. 2020. A hybrid analysis to detect java serialisation vulnerabilities. In Proceedings of

the 35th IEEE/ACM International Conference on Automated Software Engineering. 1209–1213.
[34] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural dataflow analysis via graph reachability.

ACM Transactions on Programming Languages and Systems 17, 4 (1995), 526–566.
[35] Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri. 2024. Seneca: Taint-Based Call Graph Construction for Java

Object Deserialization. Proceedings of the ACM on Programming Languages 8, OOPSLA1 (April 2024), 1125–1153.
[36] Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon. 2023. An In-depth Study of Java Deserialization

Remote-Code Execution Exploits and Vulnerabilities. ACM Transactions on Software Engineering and Methodology 32,
1 (2023), 1–45.

[37] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing engine for C. In Proceedings of the 10th
European software engineering conference held jointly with 13th ACM SIGSOFT international symposium on Foundations
of software engineering. 263–272.

[38] Yannis Smaragdakis and George Balatsouras. 2015. Pointer analysis. Foundations and Trends® in Programming
Languages 2, 1 (2015), 1–69.

[39] Prashast Srivastava, Flavio Toffalini, Kostyantyn Vorobyov, François Gauthier, Antonio Bianchi, and Mathias Payer.
2023. Crystallizer: A hybrid path analysis framework to aid in uncovering deserialization vulnerabilities. In Proceedings
of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1586–1597.

[40] Tian Tan and Yue Li. 2023. Tai-e: A developer-friendly static analysis framework for java by harnessing the good
designs of classics. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis.
1093–1105.

[41] Tree-sitter. 2025. Tree-sitter: A parser generator tool. https://tree-sitter.github.io/tree-sitter/. [Online; accessed
2025-09-11].

[42] Chengpeng Wang, Wuqi Zhang, Zian Su, Xiangzhe Xu, Xiaoheng Xie, and Xiangyu Zhang. 2024. LLMDFA: analyzing
dataflow in code with large language models. Advances in Neural Information Processing Systems 37 (2024), 131545–
131574.

[43] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing
systems 35 (2022), 24824–24837.

[44] Yiheng Zhang, Ming Wen, Shunjie Liu, Dongjie He, and Hai. Jin. 2025. Precise and Effective Gadget Chain Mining
through Deserialization Guided Call Graph Construction. In Proceedings of the 34th Conference on USENIX Security
Symposium. USENIX Association, USA.

, Vol. 1, No. 1, Article . Publication date: February 2026.

https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://tree-sitter.github.io/tree-sitter/

	Abstract
	1 Introduction
	2 Background
	2.1 JDV Detection and Its Challenges
	2.2 Related Work
	2.3 Motivating Example

	3 Methodology
	3.1 Problem Formalization
	3.2 Overview
	3.3 Interprocedural Taint Analysis
	3.4 Region-Based Semantic Reachability Analysis
	3.5 JDV Exploitation-Oriented Path Feasibility Analysis

	4 Implementation
	5 Experimental Evaluation
	5.1 Setup
	5.2 RQ1: Effectiveness Analysis
	5.3 RQ2: Ablation Analysis
	5.4 RQ3: Efficiency and Cost Analysis
	5.5 RQ4: Practicality Analysis

	6 Discussion
	6.1 Limitation and Future Work
	6.2 Threats to Validity

	7 Conclusion
	8 Data Availability
	Acknowledgments
	References

